Synthesis of $\left[(\mu-\mathrm{RS})(\mu-\mathrm{S})\left\{\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu_{4}-\mathrm{S}\right)\right]^{-}$and their reactivity toward electrophiles

Zhong-Xia Wang ${ }^{\text {a,* }}$, Cheng-Sheng Jia ${ }^{\text {a }}$, Zhong-Yuan Zhou ${ }^{\text {b }}$, Xiang-Ge Zhou ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
${ }^{\mathrm{b}}$ Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041, PR China

Received 16 October 1998

Abstract

Reaction of the $\mathrm{Et}_{3} \mathrm{NH}^{+}$salts of the $\left[(\mu-\mathrm{RS})(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$anions $\left(\mathrm{R}=\mathrm{Bu}^{t}\right.$, Ph or $\left.\mathrm{PhCH}_{2}\right)$ with $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ gives reactive intermediates $\left[(\mu-\mathrm{RS})(\mu-\mathrm{S})\left\{\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu_{4}-\mathrm{S}\right)\right]^{-}$. Reactions of the latter with alkyl halides, acid chlorides and $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{FeI}$ have been studied. X-Ray structure of $\left(\mu-\mathrm{Bu}^{t} \mathrm{~S}\right)\left(\mu-\mathrm{PhCH}_{2} \mathrm{~S}\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)$ was determined. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Iron; Bridging-sulfur ligand; Complexes; Synthesis; Reaction

1. Introduction

The $\mathrm{S}-\mathrm{S}$ bond of $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ has been reported to be cleaved readily by nucleophiles such as RLi or RMgX , forming the monoanionic complexes $[(\mu-\mathrm{RS})(\mu-$ S) $\left.\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}[1,2]$. These anionic complexes showed versatile reactivities toward electrophiles or oxidation agents [2-4]. However, the reactions of $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ with metallic nucleophiles have not been explored. In this paper, we report the reaction of $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ with $\left[(\mu-\mathrm{RS})(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}(\mathbf{A})$ and the reactivity of the resulting complexes $\left[(\mu-\mathrm{RS})(\mu-\mathrm{S})\left\{\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right\}_{2}\left(\mu_{4}-\right.\right.$ $S)]^{-}$(1) toward electrophiles. These reactions provide a general route for the synthesis of $\mathrm{Fe}-\mathrm{S}$ cluster series $(\mu-\mathrm{RS})\left(\mu-\mathrm{R}^{1} \mathrm{~S}\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)$ and also make possible the preparation of complexes of types $(\mu-\mathrm{RS})[\mu-$ $\left.\mathrm{R}^{2} \mathrm{C}(\mathrm{O}) \mathrm{S}\right]\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)$ and $(\mu-\mathrm{RS})\left[\mu-\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{FeS}\right]$ $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)$.

[^0]
2. Results and discussion

Anionic complexes $\left[(\mu-\mathrm{RS})(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}(\mathbf{A})$ are known to act as metal-centred nucleophiles [5]. Treatment of $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ with $\left[(\mu-\mathrm{RS})(\mu-\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-}$ in THF at $-78^{\circ} \mathrm{C}$ resulted in cleavage of the sulfursulfur bond of $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$, forming the tetranuclear anionic complexes, presumably 1 , in which the μ-CO ligand of \mathbf{A} is replaced by one of the sulfur atoms of $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$, Scheme 1. The anions $\mathbf{1}$ with alkyl halides afforded $(\mu-\mathrm{RS})\left(\mu-\mathrm{R}^{1} \mathrm{~S}\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(\mathbf{2}-\mathbf{4})$ and with acid chlorides gave $(\mu-\mathrm{RS})\left(\mu-\mathrm{R}^{2} \mathrm{COS}\right)-$ $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right)(\mathbf{5}-\mathbf{8})$. When the anions $\mathbf{1}$ were treated with $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{FeI}$, pentanuclear iron-sulfur complexes 9-11 were obtained as black crystals. Complexes $\mathbf{2 - 1 1}$ are air-stable in solid state, but slightly air-sensitive in solution. They are very soluble in polar organic solvents such as methylene chloride and soluble in petroleum ether. Complexes $\mathbf{3}$ and $\mathbf{4}$ were previously prepared by another route and identified by comparison of their melting points, NMR and IR spectral data
to those authentic samples [6-8]. Each of complexes 2 and 5-11 gave satisfactory microanalytical, as well as ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and IR spectra and the data are in good agreement with the structures. For instance, the IR spectra of complexes $\mathbf{2}-\mathbf{1 1}$ showed terminal carbonyl ligands. For complexes 5-8 the absorption bands of ester carbonyls were also observed. The ${ }^{1} \mathrm{H}$-NMR spectra of the complexes showed that each of them exists only one conformer, although there are four possible conformational isomers according to the orientations of the $\mathrm{S}-\mathrm{R}$ and $\mathrm{S}-\mathrm{R}^{\prime}$ to the cluster core (Scheme 2). For example, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of complex $\mathbf{2}$ showed a sharp Bu^{t} group signal at $\delta 1.33 \mathrm{ppm}$ and benzyl signals at $\delta_{\mathrm{CH}_{2}} 3.52$ and $\delta_{\mathrm{Ph}} 7.20 \mathrm{ppm}$. However, the NMR spectral data do not allow us to say which is present. It seems that structure ii-iv are unfavored by repulsions between the axial R (or R^{\prime}) group and terminal carbonyls.

Complex 2 was characterised further by single crystal X-ray diffraction. It crystallises in the triclinic crystal system. The structure is presented in Fig. 1. Crystal data and refinement are given in Table 1; selected bond lengths and bond angles are listed in Table 2. The structure shows that the molecule consists of doublybridged $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ units sharing a common central sulfur atom ligand. The two $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ units also bridge by SBu^{t} ligand and $\mathrm{SCH}_{2} \mathrm{Ph}$ ligand, respectively, and the orientations of both Bu^{t} and $\mathrm{CH}_{2} \mathrm{Ph}$ are equatorial. The coordination about the central sulfur atom is distortedly tetrahedral. The molecular geometry is very similar to those of the previously reported complexes, namely symmetrical $\left[(\mu-\mathrm{RS}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-\mathrm{S}\right) \quad(\mathrm{R}=\mathrm{Me}$ [9], Et [6]) and the unsymmetrical ($\mu-\mathrm{RS})\left(\mu-\mathrm{R}^{1} \mathrm{~S}\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}$ $\left(\mu_{4}-\mathrm{S}\right)\left(\mathrm{R}=\right.$ ferrocenylmethyl, $\mathrm{R}^{1}=\mathrm{Me}[10] ; \mathrm{R}=\mathrm{Ph}$, $\mathrm{R}^{1}=\mathrm{Et}[7]$ and $\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{1}=\mathrm{Bu}^{n}[8]$).

3. Experimental

All reactions were carried out under nitrogen using standard Schlenk techniques. Tetra-hydrofuran (THF) was distilled from sodium benzophenone ketyl. $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+} \quad\left[(\mu-\mathrm{RS})(\mu-\mathrm{CO})-\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]^{-} \quad[11]$ and $(\mu-$ $\left.\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ [12] were prepared by published procedures. The progress of all reactions was monitored by thin-layer chromatography. Infrared spectra (KBr disc) were obtained by using a VECTOR22 spectrometer. ${ }^{1} \mathrm{H}$-NMR spectra were recorded on either a Varian EM360L or a Bruker DMX500 spectrometer with a CDCl_{3} solvent. Elemental analyses were performed with a 240 C analyzer.

> 3.1. Preparation of $(\mu-R S)\left(\mu-R^{1} S\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-S\right)(\mathbf{2}$, $R=B u^{t}, R^{1}=$ PhCH $_{2} ; \mathbf{3}, R=P h, R^{1}=M e ; \mathbf{4}$, $\left.R=R^{1}=P h C H_{2}\right)$

A solution of triethylammonium salt of anion \mathbf{A} was generated by addition $\mathrm{Fe}_{3}(\mathrm{CO})_{12}(1.83 \mathrm{~g}, 3.63 \mathrm{mmol})$, $\mathrm{Bu}^{\prime} \mathrm{SH}(0.41 \mathrm{ml}, 3.63 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.51 \mathrm{ml}, 3.66$ mmol) in THF (50 ml) at room temperature under nitrogen. The solution was cooled to $-78^{\circ} \mathrm{C}$. To the solution was added $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(1.25 \mathrm{~g}, 3.63 \mathrm{mmol})$ and stirred for 30 min at $-78^{\circ} \mathrm{C}$. Subsequently benzyl chloride ($0.46 \mathrm{~g}, 3.64 \mathrm{mmol}$) was syringed. The mixture was warmed to room temperature and stirred overnight. Solvent was removed at reduced pressure and the residue extracted with petroleum ether. Filtration chromatography (silica gel; $10 \% \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ petroleum ether) gave red solid after evaporation of the solvent, which was recrystallized from petroleum ether to give red crystals of $\mathbf{2}(1.10 \mathrm{~g}, 38 \%)$. Anal. Found: C, 34.51; H, 2.22. $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{Fe}_{4} \mathrm{O}_{12} \mathrm{~S}_{3}$ requires: C, 34.36; H , 2.01. m.p. $152-153^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta$ (ppm) $1.33(\mathrm{~s}, 9 \mathrm{H}$,

Scheme 1.

Scheme 2.
Bu^{t}), 3.52(s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.20(s, $\left.5 \mathrm{H}, \mathrm{Ph}\right)$. IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2080s, 2033vs, 2016vs, 1993vs, 1981vs (Fe-CO).

Complex 3 was obtained similarly as red crystals in 84% yield, m.p. $136-138^{\circ} \mathrm{C}$ (lit. ${ }^{5} 134.5-135.5^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-$ NMR: $\delta(\mathrm{ppm}) 2.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 7.20(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph})$. IR: v $2083 \mathrm{~s}, 2050 \mathrm{vs}, 2035 \mathrm{vs}, 1989 \mathrm{vs}$, 1971vs $\mathrm{cm}^{-1}(\mathrm{Fe}-$ CO).

Complex 4 was prepared similarly as red crystals in 62% yield, m.p. $128-130^{\circ} \mathrm{C}$ (lit. ${ }^{6} 128-130^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-$ NMR: $\delta(\mathrm{ppm}) 3.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.21(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph})$. IR: $v\left(\mathrm{~cm}^{-1}\right) 2083 \mathrm{~s}, 2035 \mathrm{vs}, 2011 \mathrm{~s}, 1986 \mathrm{vs}(\mathrm{Fe}-\mathrm{CO})$.

3.2. Preparation of $(\mu-R S)\left[\mu-R^{2} C(O) S\right)\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}-$

 $\left(\mu_{4}-S\right)\left(5, R=B u^{t}, R^{2}=M e ; \boldsymbol{6}, R=P h, R^{2}=M e ; 7\right.$, $\left.R=B u^{t}, R^{2}=P h ; \boldsymbol{8}, R=R^{2}=P h\right)$To a cooled solution of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]\left[\left(\mu-\mathrm{Bu}^{t} \mathrm{~S}\right)(\mu-\right.$ $\left.\mathrm{CO}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]$ generated from $\mathrm{Fe}_{3}(\mathrm{CO})_{12}(1.50 \mathrm{~g}, 2.98$ $\mathrm{mmol}), \mathrm{Bu}^{t} \mathrm{SH}(0.34 \mathrm{ml}, 2.98 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.41$ $\mathrm{ml}, 2.99 \mathrm{mmol})$ in THF $(30 \mathrm{ml})$ was added $(\mu-$ $\left.\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(1.00 \mathrm{~g}, 2.91 \mathrm{mmol})$ and stirred for 30 min at $-78^{\circ} \mathrm{C}$. Subsequently $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{Cl}(0.4 \mathrm{ml}$, $3.64 \mathrm{mmol})$ was syringed. The mixture was warmed to room temperature and stirred overnight. Work-up as described in Section 3.1 gave red solid of complex 5 in 49% yield. Anal. Found: C, 28.84; H, 1.69. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Fe}_{4} \mathrm{O}_{13} \mathrm{~S}_{3}$ requires: C, 28.60; H, 1.60. m.p. 129$130^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm}) 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{t}\right), 2.54(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me})$. IR: $v\left(\mathrm{~cm}^{-1}\right) 2085 \mathrm{~s}, 2055 \mathrm{vs}, 2035 \mathrm{vs}, 2014 \mathrm{vs}$, 1989vs, 1981vs ($\mathrm{Fe}-\mathrm{CO}$), 1731s $\left(\mathrm{CH}_{3} \mathrm{CO}\right)$.

Complexes 6-8 were synthesized similarly. Complex 6, dark red crystals in 42% yield. Anal. Found: C, 31.03; $\mathrm{H}, 1.16 . \mathrm{C}_{20} \mathrm{H}_{8} \mathrm{Fe}_{4} \mathrm{O}_{13} \mathrm{~S}_{3}$ requires: $\mathrm{C}, 30.96 ; \mathrm{H}$, 1.04. m.p. $130-132^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta(\mathrm{ppm}) 2.55(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.20(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph})$. IR: $v\left(\mathrm{~cm}^{-1}\right) 2087 \mathrm{~s}$, 2036vs, 1998s, 1978s, 1969s (Fe-CO), 1732s $\left(\mathrm{CH}_{3} \mathrm{CO}\right)$. Complex 7, dark red crystals in 68% yield. Anal. Found: $\mathrm{C}, 34.04 ; \mathrm{H}, 1.80 . \mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Fe}_{4} \mathrm{O}_{13} \mathrm{~S}_{3}$ requires: C, 33.77; H, 1.73. m.p. $130-131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$: $\delta(\mathrm{ppm}) 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{t}\right), 7.17-7.60,7.95-8.15(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}) . \mathrm{IR}: v\left(\mathrm{~cm}^{-1}\right) 2085 \mathrm{~s}, 2036 \mathrm{vs}, 1996 \mathrm{vs}, 1976 \mathrm{~s}$, $(\mathrm{Fe}-\mathrm{CO}), 1680 \mathrm{~m}\left(\mathrm{CH}_{3} \mathrm{CO}\right)$. Complex 8, red crystals in 40% yield. Anal. Found: C, 36.30; H, 1.37. $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{Fe}_{4} \mathrm{O}_{13} \mathrm{~S}_{3}$ requires: C, 35.84 ; H, 1.19. m.p. $170-$ $172^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta(\mathrm{ppm}) 7.20-7.55,7.90-8.20(\mathrm{~m}$,
$10 \mathrm{H}, \mathrm{Ph})$. IR: $v\left(\mathrm{~cm}^{-1}\right) 2087 \mathrm{~s}, 2055 \mathrm{vs}, 2038 \mathrm{vs}, 2005 \mathrm{vs}$, 1991vs (Fe-CO), 1683m (PhCO).

3.3. Preparation of $(\mu-R S)\left[\mu-C p(C O)_{2} F e S\right)-$
 $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right]_{2}\left(\mu_{4}-S\right)\left(9, R=B u^{t} ; 10, R=P h ; 11\right.$, R $=\mathrm{PhCH}_{2}$)

To a cooled solution of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]\left[\left(\mu-\mathrm{Bu}^{t} \mathrm{~S}\right)(\mu-\mathrm{CO}) \mathrm{Fe}_{2}\right.$ $(\mathrm{CO})_{6}$] [generated from $\mathrm{Fe}_{3}(\mathrm{CO})_{12} \quad(0.64 \mathrm{~g}, 1.27$ $\mathrm{mmol}), \mathrm{Bu}^{t} \mathrm{SH}(0.14 \mathrm{ml}, 1.24 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.20 \mathrm{ml}$, $1.43 \mathrm{mmol})$ in THF $(30 \mathrm{ml})$ at room temperature] was added $\left(\mu-\mathrm{S}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(0.42 \mathrm{~g}, 1.22 \mathrm{mmol})$ and stirred for 30 min at $-78^{\circ} \mathrm{C}$. Subsequently $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{FeI}(0.37 \mathrm{~g}, 1.38 \mathrm{mmol})$ was added. The reaction was carried out and work-up as described in Section 3.1. Complex 9 ($0.30 \mathrm{~g}, 28 \%$) was obtained as black crystals. Anal. Found: C, 30.56; H, 1.60. $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{Fe}_{5} \mathrm{O}_{14} \mathrm{~S}_{3}$ requires: $\mathrm{C}, 31.05 ; \mathrm{H}$, 1.59. m.p. $154-155^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta(\mathrm{ppm}) \quad 1.43\left(\mathrm{~s}, ~ 9 \mathrm{H}, \quad \mathrm{Bu}^{t}\right)$, 5.10(s, 5H, Cp). IR: v (cm^{-1}) 2076s, 2053s, 2023vs, 1985s, 1967vs (Fe-CO).

Complexes 10 and 11 were prepared similarly. Complex 10, black crystals in 24% yield. Anal. Found: C, 33.13; H, 1.16. $\mathrm{C}_{25} \mathrm{H}_{10} \mathrm{Fe}_{5} \mathrm{O}_{14} \mathrm{~S}_{3}$ requires: C, 33.02; H, 1.11. m.p. $130-131^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta$ (ppm)

Fig. 1. ORTEP representation of the molecular structure of complex $\mathbf{2}$.

Table 1
Crystal data and refinement for complex 2

Formula	$\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{Fe}_{4} \mathrm{O}_{12} \mathrm{~S}_{3}$
M	803.94
Crystal system	Triclinic
Space group	$P \overline{1}$
Unit cell dimensions	
$a(\AA)$	$9.063(2)$
$b(\AA)$	$11.422(3)$
$c(\AA)$	$16.138(2)$
$\alpha\left({ }^{\circ}\right)$	$105.09(2)$
$\beta\left({ }^{\circ}\right)$	$101.37(2)$
$\gamma\left({ }^{\circ}\right)$	$94.87(2)$
$U\left(\AA^{3}\right)$	$1564.9(6)$
Z	2
$D_{\text {calc. }}\left(\mathrm{g}\right.$ cm $\left.{ }^{-3}\right)$	1.706
Crystal size (mm)	$0.38 \times 0.32 \times 0.26$
Radiation $\lambda(\AA)$	0.71073
$F(000)$	804
$\mu\left(\right.$ Mo-K $\left.{ }_{\alpha}\right)\left(\mathrm{mm}{ }^{-1}\right)$	2.073
Temperature (K)	$293(2)$
Total reflections	5657
Independent reflections	5657
Reflections with $I>2 \sigma(I)$	3675
Goodness-of-fit on F^{2}	0.962
Final R indices $[I>2 \sigma(I)]$	
$R_{1}{ }^{a}$	
$w R_{2}{ }^{b}$	
Largest differences peak and hole $\left(\mathrm{e} \AA^{-3}\right)$	0.0457

$$
\begin{aligned}
& { }^{\mathrm{a}} R_{1}=\Sigma| | F_{0}|-| F_{\mathrm{c}} \| . \\
& { }^{\mathrm{b}} w R_{2}=\left[\Sigma w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w F_{0}^{4}\right]^{1 / 2} .
\end{aligned}
$$

5.30(s, $5 \mathrm{H}, \mathrm{Cp}), 7.40(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph})$. IR: $v\left(\mathrm{~cm}^{-1}\right) 2078 \mathrm{~s}$, 2053s, 2028vs, 1991s, 1974s (Fe-CO). Complex 11, black crystals in 25% yield. Anal. Found: C, 34.02; H, 1.46. $\mathrm{C}_{26} \mathrm{H}_{12} \mathrm{Fe}_{5} \mathrm{O}_{14} \mathrm{~S}_{3}$ requires: C, 33.80; H, 1.31. m.p. $170{ }^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm}) 3.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $5.05(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.20-7.26(\mathrm{~b}, 5 \mathrm{H}, \mathrm{Ph})$. IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2075s, 2051s, 2038s, 2023vs, 2003vs, 1984s, 1972s, 1961s ($\mathrm{Fe}-\mathrm{CO}$).

3.4. Crystal data and structure determination of complex 2

Suitable crystals of complex 2 were grown from petroleum ether $=\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at room temperature. Data were collected on a Siemens P4 four-circle diffractometer using monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation. A semi-empirical absorption correction was applied to the data. Structure was solved by direct method and was refined by full-matrix least-squares on F^{2} with the positional and anisotropic thermal parameters on a PC using Siemens SHELXTL software package.
Atomic coordinates, thermal parameters and bond

Table 2
Selected bond distances (A) and angles $\left({ }^{\circ}\right)$ for complex 2

Distances (\AA)			
$\mathrm{Fe}(1)-\mathrm{S}(1)$	$2.2433(7)$	$\mathrm{Fe}(3)-\mathrm{S}(3)$	$2.2683(7)$
$\mathrm{Fe}(1)-\mathrm{S}(2)$	$2.2536(8)$	$\mathrm{Fe}(3)-\mathrm{Fe}(4)$	$2.5309(8)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.5283(6)$	$\mathrm{Fe}(4)-\mathrm{S}(1)$	$2.2572(8)$
$\mathrm{Fe}(2)-\mathrm{S}(1)$	$2.2454(8)$	$\mathrm{Fe}(4)-\mathrm{S}(3)$	$2.2713(7)$
$\mathrm{Fe}(2)-\mathrm{S}(2)$	$2.2719(8)$	$\mathrm{S}(2)-\mathrm{C}(13)$	$1.853(2)$
$\mathrm{Fe}(3)-\mathrm{S}(1)$	$2.2411(8)$	$\mathrm{S}(3)-\mathrm{C}(20)$	$1.865(2)$
Angles $\left.{ }^{\circ}\right)$			
$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{S}(2)$	$76.15(3)$	$\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Fe}(1)$	$135.89(3)$
$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$55.76(2)$	$\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Fe}(2)$	$135.93(3)$
$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$56.38(2)$	$\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(2)$	$68.56(2)$
$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{S}(2)$	$75.74(3)$	$\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Fe}(4)$	$68.47(3)$
$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$55.68(2)$	$\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(4)$	$134.57(2)$
$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$55.69(2)$	$\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Fe}(4)$	$125.45(3)$
$\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{S}(3)$	$76.05(3)$	$\mathrm{C}(13)-\mathrm{S}(2)-\mathrm{Fe}(1)$	$116.52(8)$
$\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(4)$	$56.06(2)$	$\mathrm{C}(13)-\mathrm{S}(2)-\mathrm{Fe}(2)$	$115.61(8)$
$\mathrm{S}(3)-\mathrm{Fe}(3)-\mathrm{Fe}(4)$	$56.17(2)$	$\mathrm{Fe}(1)-\mathrm{S}(2)-\mathrm{Fe}(2)$	$67.93(2)$
$\mathrm{S}(1)-\mathrm{Fe}(4)-\mathrm{S}(3)$	$75.68(2)$	$\mathrm{C}(20)-\mathrm{S}(3)-\mathrm{Fe}(3)$	$121.56(8)$
$\mathrm{S}(1)-\mathrm{Fe}(4)-\mathrm{Fe}(3)$	$55.46(2)$	$\mathrm{C}(20)-\mathrm{S}(3) \mathrm{Fe}(4)$	$124.48(7)$
$\mathrm{S}(3)-\mathrm{Fe}(4)-\mathrm{Fe}(3)$	$56.06(2)$	$\mathrm{Fe}(3)-\mathrm{S}(3) \mathrm{Fe}(4)$	$67.77(2)$

lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

Acknowledgements

We thank the Chinese Academy of Sciences and the Educational Ministry of China for financial support.

References

[1] D. Seyferth, R.S. Henderson, J. Am. Chem. Soc. 101 (1979) 508.
[2] D. Seyferth, R.S. Henderson, L.-C. Song, G.B. Womack, J Organomet. Chem. 292 (1985) 9
[3] D. Seyferth, A.M. Kiwan, J. Organomet. Chem. 286 (1985) 219.
[4] D. Seyferth, L.-C. Song, R.S. Henderson, J. Am. Chem. Soc. 103 (1981) 5103.
[5] L.-C. Song, Chem. J. Chinese Univ. 17 (1996) 575.
[6] L.-C. Song, M. Kadiata, J.-T. Wang, J. Organomet. Chem. 340 (1988) 239.
[7] L.-C. Song, Q.-M. Hu, L.-Y. Zhang, H. Wang, Z.-Y. Zhou, L. Liu, J. Organomet. Chem. 412 (1991) C19.
[8] L.-C. Song, Q.-M. Hu, G.-F. Jia, J.-Y. Wang, Sci. Sinica B 35 (1992) 1 (English Ed.).
[9] J.M. Coleman, A. Wojcicki, P.J. Pollick, L.F. Dahl, Inorg. Chem. 6 (1967) 1236.
[10] D. Seyferth, G.B. Womack, J.C. Dewan, Organometallics 8 (1989) 430.
[11] D. Seyferth, G.B. Womack, C.M. Archer, J.C. Dewan, Organometallics 4 (1985) 398.
[12] D. Seyferth, R.S. Henderson, L.-C. Song, Organometallics 1 (1982) 125.

[^0]: * Corresponding author. Fax: + 86-551-3631760.

 E-mail address: zxwang@ustc.edu.cn (Z.-X. Wang)

